Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38257949

RESUMO

Rare-earth elements are released into the aquatic environment as a result of their extensive use in industry and agriculture, and they can be harmful for living organisms. The effects of holmium(III), erbium(III), and gadolinium(III) when added to a growth medium in concentrations ranging from 10 to 30 mg/L on the accumulation ability and biochemical composition of Arthrospira platensis were studied. According to the results of a neutron activation analysis, the uptake of elements by cyanobacteria occurred in a dose-dependent manner. The addition of gadolinium(III) to the growth medium did not significantly affect the amount of biomass, whereas erbium(III) and holmium(III) reduced it up to 22% compared to the control. The effects of rare-earth elements on the content of proteins, carbohydrates, phycobiliproteins, lipids, ß carotene, and chlorophyll a were evaluated. The studied elements had different effects on the primary biomolecule content, suggesting that holmium(III) and erbium(III) were more toxic than Gd(III) for Arthrospira platensis.

2.
Materials (Basel) ; 16(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687556

RESUMO

Rapid technological, industrial and agricultural development has resulted in the release of large volumes of pollutants, including metal ions, into the environment. Heavy metals have become of great concern due to their toxicity, persistence, and adverse effects caused to the environment and population. In this regard, municipal and industrial effluents should be thoroughly treated before being discharged into natural water or used for irrigation. The physical, chemical, and biological techniques applied for wastewater treatment adsorption have a special place in enabling effective pollutant removal. Currently, plenty of adsorbents of different origins are applied for the treatment of metal-containing aqueous solution and wastewater. The present review is focused on mesoporous materials. In particular, the recent achievements in mesoporous materials' synthesis and application in wastewater treatment are discussed. The mechanisms of metal adsorption onto mesoporous materials are highlighted and examples of their multiple uses for metal removal are presented. The information contained in the review can be used by researchers and environmental engineers involved in the development of new adsorbents and the improvement of wastewater treatment technologies.

3.
Mar Pollut Bull ; 194(Pt B): 115346, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536080

RESUMO

The Dispersal profile of the radioisotopes (226Ra, 232Th, 235U, 40K, 137Cs) along with potentially toxic elements (Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Hg) in the sediments around the Novaya Zemlya was determined. The task was fulfilled with the aid of HPGe gamma spectrometry, inductively coupled plasma optical emission spectroscopy, DMA-80 Direct Mercury Analysis System, X-ray diffraction and statistical tools. At most of the locations, the radionuclides activity was higher than the world average activity concentration for the respective nuclei, 40K being the most abundant. From all the potentially toxic elements detected, Cr and Ni were usually observed on higher levels compared to their background values, indicating the probability of the detrimental biological effects. Thus, the present situation at the studied area might be a threat to the neighboring marine life.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Metais Pesados/análise , Mercúrio/análise , Espectrometria gama , Sedimentos Geológicos/química , Medição de Risco , China , Poluentes Químicos da Água/análise
4.
Microorganisms ; 11(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37630569

RESUMO

Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as pH, dysprosium concentration, time of contact, and temperature on the biosorption capacity was evaluated. Biomass before and after dysprosium biosorption was analyzed using neutron activation analysis and Fourier-transform infrared spectroscopy. For both biosorbents, the process was quick and pH-dependent. The maximum removal of dysprosium using Spirulina platensis (50%) and Saccharomyces cerevisiae (68%) was attained at pH 3.0 during a one-hour experiment. The adsorption data for both biosorbents fitted well with the Langmuir isotherm model, whereas the kinetics of the process followed the pseudo-second-order and Elovich models. The maximum biosorption capacity of Spirulina platensis was 3.24 mg/g, and that of Saccharomyces cerevisiae was 5.84 mg/g. The thermodynamic parameters showed that dysprosium biosorption was a spontaneous process, exothermic for Saccharomyces cerevisiae and endothermic for Spirulina platensis. Biological sorbents can be considered an eco-friendly alternative to traditional technologies applied for dysprosium ion recovery from wastewater.

5.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240304

RESUMO

The influence of gold nanoparticles after their prolonged oral administration to mice (during pregnancy and lactation) on spatial memory and anxiety levels in offspring was investigated. Offspring were tested in the Morris water maze and in the elevated Plus-maze. The average specific mass content of gold which crossed the blood-brain barrier was measured using neutron activation analysis and constituted 3.8 ng/g for females and 1.1 ng/g for offspring. Experimental offspring showed no differences in spatial orientation and memory compared to the control, while their anxiety levels increased. Gold nanoparticles influenced the emotional state of mice exposed to nanoparticles during prenatal and early postnatal development, but not their cognitive abilities.


Assuntos
Nanopartículas Metálicas , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Animais , Camundongos , Ouro , Efeitos Tardios da Exposição Pré-Natal/psicologia , Aprendizagem em Labirinto , Cognição
6.
Bioengineering (Basel) ; 10(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37106585

RESUMO

Yeast Saccharomyces cerevisiae may be regarded as a cost-effective and environmentally friendly biosorbent for complex effluent treatment. The effect of pH, contact time, temperature, and silver concentration on metal removal from silver-containing synthetic effluents using Saccharomyces cerevisiae was examined. The biosorbent before and after biosorption process was analysed using Fourier-transform infrared spectroscopy, scanning electron microscopy, and neutron activation analysis. Maximum removal of silver ions, which constituted 94-99%, was attained at the pH 3.0, contact time 60 min, and temperature 20 °C. High removal of copper, zinc, and nickel ions (63-100%) was obtained at pH 3.0-6.0. The equilibrium results were described using Langmuir and Freundlich isotherm, while pseudo-first-order and pseudo-second-order models were applied to explain the kinetics of the biosorption. The Langmuir isotherm model and the pseudo-second-order model fitted better experimental data with maximum adsorption capacity in the range of 43.6-108 mg/g. The negative Gibbs energy values pointed at the feasibility and spontaneous character of the biosorption process. The possible mechanisms of metal ions removal were discussed. Saccharomyces cerevisiae have all necessary characteristics to be applied to the development of the technology of silver-containing effluents treatment.

7.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110040

RESUMO

Indium is an extremely important element for industry that is distributed in the Earth's crust at very low concentrations. The recovery of indium by silica SBA-15 and titanosilicate ETS-10 was investigated at different pH levels, temperatures, times of contact and indium concentrations. A maximum removal of indium by ETS-10 was achieved at pH 3.0, while by SBA-15 it was within the pH range of 5.0-6.0. By studying kinetics, the applicability of the Elovich model for the description of indium adsorption on silica SBA-15 was shown, while its sorption on titanosilicate ETS-10 fitted well with the pseudo-first-order model. Langmuir and Freundlich adsorption isotherms were used to explain the equanimity of the sorption process. The Langmuir model showed its applicability for the explanation of the equilibrium data obtained for both sorbents, the maximum sorption capacity obtained using the model constituted 366 mg/g for titanosilicate ETS-10 at pH 3.0, temperature 22 °C and contact time 60 min, and 2036 mg/g for silica SBA-15 at pH 6.0, temperature 22 °C and contact time 60 min. Indium recovery was not dependent on the temperature and the sorption process was spontaneous in nature. The interactions between the indium sulfate structure and surfaces of adsorbents were investigated theoretically using the ORCA quantum chemistry program package. The spent SBA-15 and ETS-10 could be easily regenerated by using 0.01 M HCl and reused with up to 6 cycles of adsorption/desorption with a decrease in the removal efficiency between 4% and 10% for SBA-15 and 5% and 10% for ETS-10, respectively.

8.
Materials (Basel) ; 16(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676589

RESUMO

Selenium nanoparticles are attracting the attention of researchers due to their multiple applications, including medicine. The biosynthesis of selenium nanoparticles has become particularly important due to the environmentally friendly character of the process and special properties of the obtained particles. The possibility of performing the biosynthesis of selenium nanoparticles via the living culture of Arthrospira platensis starting from sodium selenite was studied. The bioaccumulation capacity of the culture, along with changes in the main biochemical parameters of the biomass, the ultrastructural changes in the cells during biosynthesis and the change in the expression of some genes involved in stress response reactions were determined. Protein, lipid and polysaccharide fractions were obtained from the biomass grown in the presence of sodium selenite. The formation of selenium nanoparticles in the protein fraction was demonstrated. Thus, Arthrospira platensis culture can be considered a suitable matrix for the biosynthesis of selenium nanoparticles.

9.
Microorganisms ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363702

RESUMO

Rhenium is a scarce and highly important metal for industry and technology. In the present study, the cyanobacterium Arthrospira platensis (Spirulina) was used to remove rhenium and related elements (Mo and Cu) from mono- and polymetallic synthetic effluents. Metal ions in different concentrations were added to the culture medium on the first, third, and fifth days of biomass growth, and their uptake by the biomass was traced using ICP-AES technique. The accumulation of rhenium in the biomass was dependent on the chemical composition of the effluents, and the highest uptake of 161 mg/kg was achieved in the Re-Cu system. The presence of rhenium, copper, and molybdenum affected the productivity of Spirulina biomass and its biochemical composition (proteins, carbohydrates, lipids, phycobiliproteins, the content of chlorophyll α and ß-carotene). With the growth of biomass in the presence of rhenium or rhenium and molybdenum, a pronounced increase in productivity and protein content was observed. The presence of copper in systems has a negative effect on biomass productivity and biochemical composition. Arthrospira platensis may be of interest as a bioremediator of rhenium-containing effluents of various chemical compositions.

10.
Materials (Basel) ; 15(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079481

RESUMO

Erbium belongs to rare earth elements critical for industry, especially nuclear technology. Cyanobacteria Arthospira platensis was used for Er(III) removal from wastewater by applying biosorption and bioaccumulation processes. The influence of pH, Er(III) concentration, contact time and temperature on the biosorption capacity of Arthospira platensis was determined. The optimal conditions for Er(III) removal were defined as pH 3.0, time 15 min and temperature 20 °C, when 30 mg/g of Er(III) were removed. The kinetics of the process was better described by the pseudo-first-order model, while equilibrium fitted to the Freundlich model. In bioaccumulation experiments, the uptake capacity of biomass and Er(III) effect on biomass biochemical composition were assessed. It was shown that Er(III) in concentrations 10-30 mg/L did not affect the content of biomass, proteins, carbohydrate and photosynthetic pigments. Its toxicity was expressed by the reduction of the lipids content and growth of the level of malonic dialdehyde. Biomass accumulated 45-78% of Eu(III) present in the cultivation medium. Therefore, Arthospira platensis can be considered as a safe and efficient bioremediator of erbium contaminated environment.

11.
Mar Pollut Bull ; 182: 114025, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35963229

RESUMO

To evaluate the prospects of using Baikal endemic sponges as bioindicators of chemical elements pollution, the elemental composition of sponges, water and substrate samples, collected in two areas with different levels of anthropogenic loading of the Baikal Lake, was determined using two analytical techniques. The content of Cl, Ca, V, Zn, As, Se, Ba, Cd, and Cu in the sponges collected in Listvennichny Bay was significantly higher than in Bolshye Koty Bay. The values of the pollution indices point at the slight to moderate pollution of the substrates. According to the bioaccumulation factor values, sponges accumulate mainly Cd, Cu and Br from the substrate, and the main part of the elements from water. The distribution of elements longwise the sponges and their intraspecific variation were evaluated. It was shown that Lubomirskia baikalensis sponges were suitable bioindicators to assess the pollution of Lake Baikal.


Assuntos
Poríferos , Poluentes Químicos da Água , Animais , Cádmio , Biomarcadores Ambientais , Lagos , Água
12.
Microorganisms ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630483

RESUMO

Cyanobacteria-mediated wastewater remediation is an economical, efficient, and eco-friendly technology. The present work deals with the bioaccumulation performance of Arthrospira platensis (Spirulina) grown for four cycles in a medium containing nickel mono- and polymetallic synthetic effluents. The metal uptake by spirulina biomass was evaluated using neutron activation analysis. The effects of effluents on biomass production, protein, and phycobiliprotein content were assessed. Metal accumulation in the biomass depended on the effluent composition and metal ion concentrations. Nickel accumulation in the biomass was directly proportional to its concentration in effluents, and maximum uptake (1310 mg/kg) was attained in the Ni/Cr/Fe system. In the same system, biomass accumulated 110 times more chromium and 4.7 times more iron than control. The highest accumulation of copper (2870 mg/kg) was achieved in the Ni/Cu/Zn/Mo system and zinc (1860 mg/kg)-in the Ni/Cu/Zn/Sr system. In biomass grown in the media loaded with nickel and also chromium, iron, copper, strontium, zinc, and molybdenum, a decrease in productivity (on average by 10%) during the first cycle of cultivation and moderate reduction of protein content (by 15-27%) was observed. The presence of metals in the cultivation media inhibited phycobiliprotein synthesis, especially of phycocyanin, and promoted the synthesis of allophycocyanin. The maximum reduction of phycocyanin content was 77%, and the increase of allophycocyanin content-by 45%. Arthrospira platensis may be deemed as bioremediation of nickel-polluted wastewaters of complex composition.

13.
Arch Environ Contam Toxicol ; 82(3): 355-366, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35266044

RESUMO

The moss biomonitoring technique was used for the assessment of air pollution in the Republic of Moldova, in the framework of the UNECE ICP Vegetation Programme. The content of 11 chemical elements (Al, V, Cr, Fe, Ni, Zn, As, Sb, Cd, Cu, and Pb) was determined by neutron activation analysis and atomic absorption spectrometry in samples collected in spring 2020. Distribution maps were built to identify the most polluted sites. The highest concentrations of elements in mosses were determined in the north-eastern, central, and western parts of the country. The main element associations were identified using factor analysis. Three factors were determined, of which one of mixed geogenic-anthropogenic origin and two of anthropogenic origin. A comparison of the data obtained in 2020 and 2015 showed a significant decrease in the concentrations of Cr, As, Sb, Cd, Pb, and Cu in 2020. The state of the environment was assessed using Contamination Factor and Pollution Load Index values, which characterized it as unpolluted to moderately polluted. Possible air pollution sources in the Republic of Moldova are resuspension of soil particles, agricultural practices, vehicles, industry, and thermal power plants.


Assuntos
Poluentes Atmosféricos , Briófitas , Metais Pesados , Oligoelementos , Poluentes Atmosféricos/análise , Monitoramento Biológico , Monitoramento Ambiental/métodos , Metais Pesados/análise , Moldávia , Oligoelementos/análise
14.
Toxics ; 10(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35324738

RESUMO

Soil and water pollution is a major problem that has a negative impact on ecosystems and human health in particular. In the bioremediation processes, the application of photosynthetic microorganisms, including cyanobacteria, is a direction of action addressed with increasing frequency in the context of further development and improvement of environmentally friendly techniques needed for detoxification of soils and waters polluted with low concentrations of toxic elements, since they pose a challenge for traditional treatment methods. In the present study, the removal of copper and other metal ions from multielement systems by three generations of Nostoc linckia is discussed. Changes in the biochemical composition of the nostoc biomass, which accumulates metal ions, were monitored. Neutron activation analysis was applied to assess Cu, Fe, Ni, and Zn accumulation by biomass, as well as to determine the biochemical composition of biomass after specific biochemical methods were used. The capacity of the accumulation of copper and other metal ions from multi-elemental systems by cyanobacteria Nostoc linckia was high and increased over two cycles of biomass growth in the systems Cu-Fe-Ni and Cu-Fe-Zn and over three cycles in Cu-Fe and Cu-Fe-Ni-Zn systems. It constituted 1720-10,600 µg metal/g depending on the system and cycle of cultivation. The accumulation of Fe, Ni, and Zn also increased over the generations of nostoc. The process of metal accumulation was demonstrated by a significant change in the biomass biochemical composition. Cyanobacteria Nostoc linckia possess a pronounced capacity of copper and other metal ion accumulation from multimetal systems and showed an increased resistance in environments polluted with heavy metals.

15.
Toxics ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35202252

RESUMO

For the first time, moss biomonitoring covering the territory of the entire Moscow region, without including Moscow, was performed in 2020. Moss Pleurozium schreberi collected at 156 sampling sites were analyzed using neutron activation analysis and atomic absorption spectrometry. A total of 34 elements were determined in moss samples. Obtained data were compared with the results of the moss surveys performed in the Vladimir and Yaroslavl regions in 2018 and with the data of moss surveys conducted in the Moscow region on a limited number of sampling sites in 2004 and 2014. The Moscow region showed to be more polluted than the Vladimir and Yaroslavl regions. In the the Moscow region, the decrease of the content of the main part of the elements over time was noted. Trace elements emission sources were identified and characterized using factor analysis. Contamination Factor, Pollution Load Index, and Ecological Risk were calculated to assess the level of the region contamination and elements effect on human health. In general, the Moscow region can be characterized as unpolluted to moderately polluted with a low ecological risk of human exposure. The cities satellites around Moscow were determined to experience particular environmental stress, even in the period of the COVID-19 restrictions.

16.
Biol Trace Elem Res ; 200(10): 4534-4549, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34820780

RESUMO

Even when cultivated in uncontaminated soils, tobacco plant has higher propensity to extract and accumulate trace elements. The concentrations (mass fractions) of essential elements (K, Ca, Mg, Na, Cl, Mn, Fe, Cu, and Zn) and 28 non-essential elements in tobacco plant (leaves, stem, and root) of Northeast India and their respective soils were quantitatively measured. Hg mass fraction in all samples analyzed were found to be < 10 mg/kg. The heavy element mass fractions of tobacco are weakly correlated to different soil parameters. The bioconcentration factor values indicated that Cd (7) is selectively absorbed and translocated in the tobacco leaves compared to Zn (1.7), Cu (1.5), Ni (0.12), and Pb (0.1). Under acidic soil conditions, tobacco plant efficiently absorbed and translocated Cl- ion with great ease, whereas it may be a very low accumulator of rare-earth elements. The mass fractions of Mn, Cu, Sb, Cs, Rb, and Pb are very similar to the "reference plant," whereas significantly higher mass fractions of Al, Sc, Ti, Zr, Hf, Ta, Th, and U are present in the roots of tobacco plant relative to the "reference plant." Principal component analysis has revealed that Northeast Indian tobacco can be clearly differentiated from other varieties of tobaccos used in different countries because of their element profiles.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Monitoramento Ambiental/métodos , Chumbo/análise , Metais Pesados/análise , Análise de Ativação de Nêutrons , Solo/química , Poluentes do Solo/análise , Espectrofotometria Atômica , Oligoelementos/análise
17.
J Environ Health Sci Eng ; 19(2): 1383-1398, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900274

RESUMO

The adsorption capacity of biologically modified zeolite with respect to copper-containing effluents (Cu(II)-Fe(III), Cu(II)-Fe(III)-Ni(II), Cu(II)-Fe(II)-Zn(II), and Cu(II)-Fe(II)-Ni(II)-Zn(II)) has been investigated in order to apply it for industrial effluents treatment. Obtained bio-zeolite was characterized using neutron activation analysis, confocal laser scanning microscopy, and scanning electron microscopy. The efficiency of metal ions removal was determined as a function of pH, copper concentration, time, and temperature. The metal sorption in analyzed systems showed to be pH-dependent. The equilibrium adsorption data were interpreted using Freundlich and Langmuir isotherms and the adsorption mechanism was investigated by kinetic studies. The sorption of Cu(II) and Zn(II) fitted well pseudo-first and pseudo-second-order models, while Ni(II) sorption was better described by the Elovich model. The thermodynamic parameters, ∆G°, ∆H°, and ∆S were evaluated to understand the nature of the sorption process. Obtained results show that bio-zeolite is of interest for heavy metal ions removal from industrial effluents. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-021-00694-x.

18.
Nanomaterials (Basel) ; 11(11)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34835756

RESUMO

The effect of unmodified and functionalized Spirulina platensis biomass silver nanoparticles on rats during prolonged oral administration was assessed. Silver nanoparticles were characterized by using transmission electron microscopy, while their uptake by the biomass was confirmed using scanning electron microscopy and energy dispersive analysis. The content of silver in the different organs of rats after a period of administration (28 days) or after an additional clearance period (28 days) was ascertained by using neutron activation analysis. In animals administrated with the unmodified nanoparticles, the highest content of silver was determined in the brain and kidneys, while in animals administrated with AgNP-Spirulina, silver was mainly accumulated in the brain and testicles. After the clearance period, silver was excreted rapidly from the spleen and kidneys; however, the excretion from the brain was very low, regardless of the type of nanoparticles. Hematological and biochemical tests were performed in order to reveal the effect of nanoparticles on rats. The difference in the content of eosinophils in the experimental and control groups was statistically significant. The hematological indices of the rats did not change significantly under the action of the silver nanoparticles except for the content of reticulocytes and eosinophils, which increased significantly. Changes in the biochemical parameters did not exceed the limits of normal values. Silver nanoparticles with the sizes of 8-20 nm can penetrate the blood-brain barrier, and their persistence after a period of clearance indicated the irreversibility of this process.

19.
Materials (Basel) ; 14(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443283

RESUMO

Yeast Saccharomyces cerevisiae biomass was applied for rhenium and accompanying elements (copper and molybdenum) removal from single- and multi-component systems (Re, Re-Mo, Re-Cu, and Re-Mo-Cu). Yeast biomass was characterized using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The effects of biosorption experimental parameters such as solution pH (2.0-6.0), rhenium concentration (10-100 mg/L), time of interaction (5-120 min), and temperature (20-50 °C) have been discussed in detail. Maximum removal of rhenium (75-84%) and molybdenum (85%) was attained at pH 2.0, while pH 3.0-5.0 was more favorable for copper ions removal (53-68%). The Langmuir, Freundlich, and Temkin isotherm models were used to describe the equilibrium sorption of rhenium on yeast biomass. Langmuir isotherm shows the maximum yeast adsorption capacities toward rhenium ions ranged between 7.7 and 33 mg/g. Several kinetic models (pseudo-first-order, pseudo-second-order, and Elovich) were applied to define the best correlation for each metal. Biosorption of metal ions was well-fitted by Elovich and pseudo-first-order models. The negative free energy reflected the feasibility and spontaneous nature of the biosorption process. Saccharomyces cerevisiae biomass can be considered as a perspective biosorbent for metal removal.

20.
Environ Sci Pollut Res Int ; 28(37): 52216-52224, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34002316

RESUMO

Cyanobacteria Spirulina platensis due to its high biosorption and bioaccumulation capacity toward metal ions can be considered as an excellent candidate for environmental bioremediation. The effect of Zn and in different combinations on the accumulation capacity of Spirulina platensis biomass and its biochemical composition was investigated. Four Zn-containing systems with a different combination of metal ions (Zn; Zn/Cu/Sr; Zn/Cu/Ni; Zn/Cu/Sr/Ba) and different metal concentrations were modeled. Studied systems were introduced in the cultivation medium on the fifth day of biomass grow and experiments were performed in three variants, which differed by metal ions concentrations. Metal uptake by biomass was traced using neutron activation analysis. Spirulina platensis showed a high accumulation capacity for all metal ions present in the analyzed system. Because the metals were added at the beginning of the stationary growth phase, the contact with the biomass was only 24 h, even at the highest metal concentration in the systems, the accumulation of Spirulina platensis biomass was reduced by no more than 11.2%. Spirulina platensis biomass grown in a mono-metallic system expressed two biochemical indicators of stress: decrease of phycobiliprotein content and increase of malondialdehyde content. In biomass grown in the presence of Zn-containing multi-metallic systems, three indicators of stress were expressed: decrease of protein content, reduction of phycobiliprotein content, and increase of malondialdehyde content. Spirulina platensis biomass can be considered as an effective accumulator for the treatment of zinc-containing industrial effluents.


Assuntos
Spirulina , Zinco , Bioacumulação , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...